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Abstract— We propose a hierarchical planning algorithm
that efficiently computes an optimal plan for finding a target
object in large environments where a robot must simultaneously
consider both navigation and manipulation. One key challenge
that arises from large domains is the substantial increase in
search space complexity that stems from considering mobile
manipulation actions and the increase in number of objects. We
offer a hierarchical planning solution that effectively handles
such large problems by decomposing the problem into a set
of low-level intra-container planning problems and a high-level
key place planning problem that utilizes the low-level plans. To
plan optimally, we propose a novel admissible heuristic function
that, unlike previous methods, accounts for both navigation and
manipulation costs. We propose two algorithms: one based on
standard A* that returns the optimal solution, and the other
based on Anytime Repairing A* (ARA*) which can trade-off
computation time and solution quality, and prove they are
optimal even when we use hierarchy. We show our method
outperforms existing algorithms in simulated domains involving
up to 6 times more number of objects than previously handled.

I. INTRODUCTION

Consider a robot searching for a target object in a large
home environment, densely populated with objects that oc-
clude a target object from view as shown in Figure 1.
The robot would have to manipulate occluding objects and
navigate to different viewpoints to reveal novel volumes,
while minimizing the operation time. Endowing robots with
such capability would unlock vast opportunities not only
in homes, but also warehouses, disaster sites, and military
bases.

Our goal is to design a planner that can efficiently compute
an optimal mobile manipulation plan for finding a target
object in such large environments. This is a challenging
problem involving a complex search space where the robot
must reason over a large number of objects and plan motions
in the joint configuration space of the robot base and manip-
ulator. To guarantee optimality, the robot would also have to
compute a plan that has the minimum operation time.

Given its importance, there have been several attempts to
solve the object search problem, which can largely be divided
into two classes: Active Visual Search (AVS) and Object
Search through Manipulation (OSM). The goal of AVS is to
discover the target object by planning the robot’s viewpoints
throughout the scene. While AVS has been applied to large,
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Fig. 1: A robot (blue circle) is searching for a target
object (yellow cup, occluded in the zoomed-in container
view, upper right) in a large cluttered environment, using
a combination of navigation and manipulation actions to
change its viewpoint, to get to a container and to clear
occluding objects. In the figure, objects are marked with a
green box; containers are marked with cyan, with the dashed
circle indicating the robot workspace boundary enclosing the
designated container; viewpoints are marked with magenta,
with rays cast from the center that indicate observed regions.

multi-room scale problems, they are confined to relatively
uncluttered environments where the volumes in the environ-
ment can be readily observed by traveling to an appropriate
viewpoint as they do not consider object manipulation [1]–
[3]. The goal of OSM, on the other hand, is to discover
the target object through sequential object manipulation [4]–
[9]. These algorithms typically assume relatively small [7,
9] or no base movements [4, 6, 8], and are confined to
environments with a smaller workspace than AVS such as
a single cupboard or shelf. For these reasons, they only have
been applied in domains with a relatively small number of
objects than AVS.

For large, cluttered domains that we are contemplating,
these approaches are not able to find an optimal solution ei-
ther because they guarantee optimality in their original setup
but there is no trivial adaptation to a mobile-manipulation
setting, or simply because they cannot find the optimal
solution in the first place. Moreover, because our domains
have significantly more number of objects, these algorithms
suffer from significantly larger branching factor and planning
horizon, especially because they lack an informative heuristic
function that considers both navigation and manipulation.

We propose an algorithm called Ω2 Planner (Optimal
Object search through Heuristic Hierarchical search using



Fig. 2: An overview of our framework. Black ellipses denote objects, light and dark grey shade denotes individually and
jointly occluded volume, green rectangles denote the connected components, cyan rectangles denote containers, and cyan
filled circle denotes container key-place. A and B show the intra-container planning that only use manipulation actions in [4],
and C shows key-place planning that only uses navigation actions. Naively using a traveling salesman approach that must
complete intra-container plan before moving its base leads to a suboptimal plan. In contrast, Ω2 that can move between
key-places during intra-container plan leads to an optimal plan.

Mobile Manipulation Planner), which efficiently computes
an optimal plan in such complex search space by using a
hierarchy and novel heuristic function. Our main intuition
is to utilize the hierarchy in the way objects are typically
arranged in large cluttered environments. In most of these
environments, objects are arranged into different regions such
as cupboards, shelves, or table-tops that we call containers.
Objects in different containers do not have a joint occluding
volume, or affect each other’s reachability, allowing us to
treat each container as an independent OSM problem.

To exploit this, we first discretize the space of robot base
poses given the locations and shapes of objects except those
of the target object so that each base pose is associated
with a container, or reveals a volume of the environment.
Unlike existing OSM methods which uniformly discretizes
the space [7], we discretize the space using an extension of a
sensor placement algorithm [10] into key-places. Specifically,
it allocates viewpoint key-places to the poses where the robot
can observe a part of the environment, such that views at
all key-places cover the entire environment. Additionally, it
allocates container key-places such that at each key-place,
all objects in that container are within the robot’s reach.

Using the key-places, Ω2 performs a hierarchical search.
At a lower-level, we use an OSM algorithm [4] to compute
the intra-container plan for each container. At a higher
level, we perform key-place level planning, where we plan a
sequence of key-places and the corresponding navigations.
If we visit a container key-place, we follow the intra-
container plan at that container. This hierarchical decom-
position greatly reduces the search complexity by breaking
the large problem into smaller independent problems, and
reducing the branching factor from the number of objects to

the number of key-places.
To perform the key-place level planning, we can naively

adapt [4] by greedily merging different intra-container plans
at different key-places. However, while the greedy approach
can guarantee optimality in OSM problems [4], it loses
optimality in mobile-manipulation setup as the navigation
cost is not considered. Alternatively, we can treat this as
a traveling salesman problem (TSP) and compute the plan
that visits all the key-places with the least navigation cost.
However, this also gives a suboptimal plan because we
cannot compare the cost between removing an object at
the current container versus that from another container,
even though there may be more valuable actions at other
containers.

We propose an admissible heuristic function that considers
both the navigation and manipulation cost-to-go, by decom-
posing cost contributions from these two action types and
estimating the lower bound for each part by solving a relaxed
sub-problem. During planning, we allow interleaving low-
level intra-container plans based on this heuristic function
instead of committing to an intra-container plan. Figure 2C
compares our approach with the TSP approach.

Based on this hierarchical decomposition and heuristic
function, we offer two search algorithms. The first is based
on A*, and the second is an anytime algorithm based on
Anytime Repairing A* (ARA*) [11, 12], and we prove that
both algorithms guarantee an optimal solution.

We evaluate the performance of our algorithm by com-
paring against state-of-the-art OSM algorithms [4, 7] that
are adapted to mobile manipulation settings in four different
simulated environments from iGibson [13]. Compared to
previous works that only addressed up to 12 objects [4]



limited to a single container seen from at most 5 viewpoints
[7], we test in 4 different environments that contain up to
10 containers, 18 viewpoints, and 75 objects. Our largest
domain involved branching factor (BF) of 93 while previous
works had at most 17 [4, 7], and we show that our algorithm
consistently outperforms baselines in all four domains.

To summarize, our key contributions are:
• an object search algorithm for large-scale domains

through mobile manipulation;
• an efficient search through hierarchical decomposition

of mobile manipulation sub-problems;
• an optimal search through novel admissible and consis-

tent heuristic function;
• practical trade-off between compute time and solution

quality through an anytime extension.

II. RELATED WORK

A. Active Visual Search

The objective of AVS is to find the sequence of robot
viewpoints that maximizes the probability of detecting the
target object. One branch of AVS focuses on modelling
accurate probabilities of target object location using prior
semantic information such as object-room co-occurrence [1,
2, 14], object-object co-occurrence [2, 14, 15], and spatial re-
lations between objects [16, 17]. Our framework can readily
incorporate these prior probabilities.

Other branch of AVS focuses on planning under uncer-
tainty. Aydemir et al. [1] model the problem as a Markov
Decision Process for planning the sequence of next best
views while exploiting spatial relations between objects.
Wang et al. [3] model the problem as a Partially Observable
Markov Decision Process (POMDP), and search object with
a partial map of an environment. They model the unexplored
part as belief state and use a graph structure to reduce the
search space. Wandzel et al. [18] also model the problem
as a POMDP, and search multiple target objects using
an efficient forward search algorithm called POMCP [19].
They form potential target objects locations as belief state,
while updating it with not only visual observations but also
language commands. We do not consider uncertainty, and
leave that as future work. As we will empirically show, even
in a deterministic setting, efficiently computing an optimal
plan in large multi-room environments with several tens of
objects is already challenging for state-of-the-art algorithms.

All of these algorithms consider planning viewpoints and
navigation motions, but not manipulation. As a result, none
of them can search objects in a cluttered environment with
object occlusions.

B. Object Search through Manipulation

Unlike AVS, OSM uses manipulation to find a target object
in cluttered environments. Wong et al. [20] introduced an
algorithm to address OSM in large environments, but was
limited to a greedy algorithm that only finds sub-optimal so-
lutions. Our hierarchical problem decomposition is inspired
by Dogar et al. [4], where they define a hierarchy based on
a notion of connected component, which is a set of objects

that have intersecting occluding volumes or influence each
other’s reachability. Because different connected components
are independent, we can break down the problem first into
planning for each connected component, and then greedily
merge these connected-component-level plans. We take a
step further, and add one more level of hierarchy to handle
key place planning. Moreover, because greedy merging is
sub-optimal when we consider navigation, we introduce a
novel heuristic function that guarantees optimality when
paired with A∗ search. See Figure 2 for details.

Lin et al. [7] extends [4] to combine manipulation and nav-
igation. But because connected components are ill-defined
with multiple viewpoints, they lose the benefit of hierarchical
planning, limiting their scalability to larger scenes.

Li et al. [8] and Xiao et al. [9] formulate object search
in cluttered environment as a POMDP with sampling-based
online method that can address perception and manipulation
error [8, 9, 19, 21]. Li et al. addresses OSM as choosing
the target object among partially visible objects through ma-
nipulation. Xiao et al. combines manipulation planning and
continuous viewpoint planning with base movements while
considering perception and manipulation error. Unlike these
algorithms, we do not model perception error or occlusion.
Instead, we focus on addressing the challenge of optimal
planning in domains with large branching factors.

III. PROBLEM FORMULATION

The robot seeks to find the target object o∗ of a known
shape in a multi-room environment filled with movable
objects, where only the robot is allowed to move objects.
We are given a map M that indicates the locations and
shapes of immovable room structures and non-target movable
objects in the scene. Like previous works [4, 5, 9], we assume
perfect perception and deterministic transition model, that all
manipulation motions are pick, and do not consider object
placement; rather, an object is removed from the scene upon
picking as opposed to being re-positioned.

The robot state is described as srob = {{x, y, ψ}, ~θ} ∈
SE(2) × R|~θ|, where (x, y, ψ) denotes the position and
orientation of the robot’s base and ~θ denotes the arm joint
configurations. The state space consists of sobj , the locations
of remaining objects in the scene where each location is
expressed in SE(2), sloc, the discrete set of viewpoint key-
places that have not been visited, and srob. The initial state
s0 is denoted as (sobj0 , sloc0 , srob0 ). The goal state is (∅, ∅, srob)
– that is, all non-target objects are removed and all viewpoint
key-places are visited.

The action space is represented as a set of viewpoint key-
places and objects. Note that the action space is hybrid: we
have a discrete choice over viewpoint key-places and objects,
and continuous choice over motions. We pre-compute the
motions for each object and a pair of key-places, and per-
form discrete graph search on the viewpoint key-places and
objects. We denote a continuous motion as τ which is either
a navigation or pick motion depending on the circumstance.

Our goal is to compute an optimal motion sequence that
discovers o∗. Because our goal is the same as [4], we use



the same optimality criteria as [4], called minimum expected
execution time, defined as

min
τ1:H

E[T [τ1:H ]] = min
τ1:H

H∑
t=1

P (τt) · T (τ1:t) , (1)

where τ1:H is a sequence of motion plans of length H , P (τt)
denotes the probability of finding o∗ after using the motion
at time step t, and T (τ1:t) denotes the time taken to execute
the motion plans up to time step t.

Similar to [4], we assume P (τ) is proportional to the
size of the volume revealed by taking τ , denoted Vrev(τ),
weighted by a given prior coefficient w(τ). w(τ) reflects
that each container has different probability of containing
the target object. For instance, screwdrivers are more likely
to be in a toolbox compared to a refrigerator.

So minimizing Eqn. 1 is equivalent to the following:

min
τ1:H

E[T [τ1:H ]] = min
τ1:H

H∑
t=1

w(τt) · Vrev(τt) · T (τ1:t) . (2)

For OSM problems, where the robot only has a single
container, time for moving an object stays the same across
different time steps. For us, because our τt may involve
navigation that varies across the source and target key-place
that the robot will travel to, this is no longer true. So instead,
we use the following equivalent objective function,

min
τ1:H

H∑
t=1

Vunseen(τt) · T (τt) , (3)

where Vunseen(τt) = (Vtotal −
∑t−1
t′=1 w(τt′) · Vrev(τt′)) is the

total volume that have not been revealed up to time t. Note
that eqn. 2 and 3 compute the same quantities, as illustrated
in Figure 3A.

IV. METHOD

A. Method Overview

We now describe Ω2 that computes a plan that solves the
problem given in Eqn. 3. The key idea is to break the problem
into a set of lower-level intra-container planning problems
that are efficiently solved by [4], and use higher-level key-
place planning to use the intra-container plans. As we will
describe below, this effectively reduces the branching factor
from number of objects to number of key-places, and finds
an optimal plan based on our admissible heuristic function.

The algorithm is described in Algorithm 1. It takes as
inputs M, O, the locations and shapes of non-target objects
in the scene, o∗, the shape of the target object, and hΩ2(·),
an admissible heuristic function that takes account of both
navigation and manipulation costs.

Our algorithm begins by discretizing the search space into
a set of key-places K. We allocate viewpoint key-places
to the poses where the robot can observe a part of the
environment, and container key-places for each container so
that the robot can remove objects to reveal the occluded
volumes. We first compute the container key-places. To
compute this, we assign a key-place for each container such

Algorithm 1 Ω2(M, O, o∗, hΩ2(·))

1: K ← ComputeKeyPlaces(M, o∗)
2: s0 = (M.sobj0 ,K.sloc0 , srob0 )
3: Π ← ComputeMotionPlans(K,O)
4: C(·, ·)← GetEdgeCost(Π)
5: Ξ ← ComputeIntraContainerPlan(M,Π)
6: τ1:H ← ComputeKeyPlacePlan(s0,K, hΩ2(·), C(·, ·),Ξ)
7: return τ1:H

that all of the objects in the container are within the robot’s
reach, and the volume inside the container is completely
visible from that key-place. If the container is large and
a single key-place is insufficient, we assign multiple key-
places until the container is completely covered in terms of
reachability and visibility.

We then compute viewpoint key-places. Allocating view-
point key-places is akin to the Point-Guard Art Gallery Prob-
lem: we seek a set of positions whose sensing area covers the
scene volume. Based on this, we adapt the method in [10] to
our problem. First, we employ the dual sampling proposed
in [10] to the voxelized volumes of the scene to quickly
sample key-places that cover the volumes. Then, we employ
set-cover optimization of key-places to reduce redundant
samples. During this process, we also consider container
key-places as viewpoint key-places, and only the remainder
of the unseen volume within the environment is accounted
for during viewpoint key-place allocation. Examples of key-
places are given in Figure 1.

Using the key-places and M, we then compute the initial
state. Afterwards, we pre-compute the set of motions, de-
noted Π, for navigating between all pairs of key-places and
the motions for picking objects. This is then used to compute
the edge cost of each action, C(st, τt) = Vunseen(τt) · T (τt).

We then use the algorithm from [4] to compute the intra-
container plans for each container, denoted Ξ. This lower-
level planner uses a set of objects in that container as its
action space, instead of all the objects in the scene, effec-
tively reducing branching factor and planning horizon. Each
container is now associated with an intra-container plan, and
we have a set of viewpoint key-places. Using the set of
key-places, denoted K, as the action space, we compute the
optimal key-place level plan using either A* or ARA* [11]
in line 6, which will yield Ω2-A* and Ω2-ARA* respectively.
For a chosen action k ∈ K, the associated motion plan is a
navigation motion from the current key-place to k if k is a
viewpoint key-place. If k is a container key-place, then the
associated motion is the navigation motion followed by a
manipulation motion that corresponds to a step in the intra-
container plan for that container.

Note that using our hierarchy, we reduced a large problem
that involves all of the objects and viewpoint key-places into
a set of intra-container planning problems and a problem
of planning over key-places. We now describe our heuristic
function that enables us to compute an optimal plan over the
key-places, hΩ2 .



B. Admissible Mobile-manipulation Heuristic Function

Since our plan has both navigation and manipulation mo-
tions, we construct our heuristic as a sum of two independent
heuristics per motion type: hmanip for costs incurred during
manipulation and hnav for costs incurred during navigation.
So hΩ2(s) = hnav(s) + hmanip(s), where s is a state.

For hmanip, we estimate the cost-to-go by optimistically
assuming that the navigation cost is zero, and treat the set
of containers in the scene as a single container, as illustrated
in Figure 3B, and apply the algorithm from [4] to obtain a
plan. Our heuristic is the cost of this plan, defined as

hmanip(s) =

H∑
t=1

Vunseen(τ
(M)
t )T (τ

(M)
t ) , (4)

where τ (M)
t is a manipulation motion. By optimality of [4],

hmanip(s) is consistent. Moreover, the plan is extremely quick
to compute because [4] uses a greedy strategy when merging
different parts of the plan.

When computing hnav, we assume the manipulation cost
is zero. In other words, when the robot visits a container
key-place, it removes all objects instantly. However, unlike
hmanip where you can simply compute manipulation motions,
for hnav we still need to solve a significant search problem to
obtain the lower-bound of the navigation cost, which can take
a significant amount of time when |K| is large. Instead, we
optimistically assume that the robot will move directly from
the current key-place to other key-places, rather than visiting
them sequentially (See Figure 3C). Further, we optimistically
estimate V (k)

unseen by only considering the occluding volumes
of objects at the destination key-place. So, hnav is defined as

hnav(s) =
∑
k∈K

V (k)
unseen · T (τ

(N)
s,k ), (5)

where τ (N)
s,k is a navigation motion from the robot base pose

in state s to the key-place k, and V
(k)

unseen is the sum of all
the volumes occluded by the objects in k if k is a container
key-place, or the volume that will be revealed at k if it is
a viewpoint key-place. If a volume is visible from multiple
viewpoints, we optimistically assume that it will be revealed
from the viewpoint nearest to the current position. As we
assume minimum time to reveal each volume, hnav(s) is
consistent by triangle inequality.

Because we underestimate the costs with optimistic as-
sumptions, the heuristic function is admissible. So if we use
A∗ with hΩ2 in the original action space defined by objects
and viewpoint key-places, we would get an optimal plan in
terms of the sequence of objects and viewpoint key-places.
We will call this approach FLAT-Ω2. Now we will show Ω2-
A* that uses hierarchy will yield the same optimal solution
as FLAT-Ω2. Denote FLAT-τ∗ as the optimal plan found by
FLAT-Ω2, and Ω2-τ∗ as the one found by Ω2-A*. We say
containers are independent if a robot cannot move an object
from one container to access another container, or reveal a
volume in another container. We have the following theorem.

Fig. 3: A. Our cost function is a sum of all the edge costs
for manipulating objects O1,2,3 and navigating to a viewpoint
key-place K1. Both Eqns. 2 (sum of dotted horizontal bars)
and 3 (sum of solid vertical bars) compute the area under the
curve, the product of unseen volume and incurred time. B.
Illustration of optimistic assumption for hmanip. We assume
navigation costs are zero, so all four containers are accessible
by the robot. C. Illustration of optimistic assumption for hnav.
We ignore all manipulation costs, and assume that the robot
reaches each key-place with a direct path(orange arrow) from
the current location, as opposed to a real path(grey arrow).

Theorem. Assume that for any container, all objects are
within the robot’s reach only at the associated key-place,
and that objects at different containers do not have a joint
occluding volume. Then, Ω2-A* finds an optimal sequence
of objects and viewpoint key-places.

Proof This would be true if (1) for each container, the
sequence of objects in FLAT-τ∗ is equivalent to the sequence
of objects found by [4], and (2) the order of key-place visits
in FLAT-τ∗ and Ω2-τ∗ are the same. We show (1) first.

Suppose we have more than one key-places, at least two
of which is a container key-place. Without loss of generality,
consider a container key-place C. FLAT-τ∗ and Ω2-τ∗ would
be different if by visiting other key-places, the utility Vrev(τ)

T (τ)
of objects in C changes, where by [4] utility determines
the sequence of objects within the container to minimize
the sum of costs. But by our assumption, the occluding
volumes of objects and their reachability in one container
are independent of those in other containers, or revealing of
a volume at a viewpoint key-place. Therefore, FLAT-τ∗ and
Ω2-τ∗ must have equal intra-container plan for C.

We now show that the sequence of key-places in Ω2-τ∗

is equivalent to that of FLAT-τ∗. While Ω2 uses the set of
key-places as its action space, for each action, it reduces
to removing an object according to the intra-container plan
found by [4]. We have established above that Ω2-τ∗ and
FLAT-τ∗ have the same intra-container plan for any container
in the scene. And for Ω2-A*, since it uses A* search with an
admissible heuristic, it is guaranteed to find an optimal plan
that merges these intra-container plans with viewpoint key-
places. So, Ω2-τ∗ and FLAT-τ∗ must have the same sequence
of key-places.

V. RESULTS

A. Domain Description

To evaluate Ω2, we perform experiments in realistic large-
scale household environments with multiple rooms from



iGibson library [13] built on Pybullet [22] simulator. In each
environment, we spawn at most 8 objects per each container,
randomly selected from the YCBObjects dataset [23]. Each
object is randomly set to a stable pose within the container,
and sequentially inserted into the container until it is infeasi-
ble to insert it without colliding with existing objects. After
spawning the objects, we compute the occluding volumes by
raycasting from each key-place. Below is a summary of our
environments:
• Pomaria2: BF=31 (24 objects, 3 containers and 7 view-

points). We set w(τ) = 0.01 for the viewpoint key-
places. Out of 3 containers, we set mean(w(τ)) = 14.8
for container 0, mean(w(τ)) = 9.6 for container 1,
and w(τ) = 1 for container 2. This models a scenario
where we have a prior belief that containers 0 and 1
contain the target object with higher probability than
other containers or viewpoints.

• Merom0: BF=43 (32 objects, 4 containers and 11 view-
points). We set w(τ) = 0.01 for the viewpoint key-
places, and w(τ) = 1 for container key-places, since o∗

is much more likely to be in a container.
• Benevolence2: BF=40 (21 objects, 3 containers and 19

viewpoints). Uses the same w(τ) as Merom0 domain.
• Merom1: BF=93 (75 objects, 10 containers and 18

viewpoints). We set w(τ) = 0.01 for the viewpoint
key-places. Out of 10 containers, we set 3 containers
with high w(τ). mean(w(τ)) = 28 for container 0,
mean(w(τ)) = 10 for container 1, and mean(w(τ)) =
2.35 for container 2. We applied w(τ) = 1 for remain-
ing containers.

To compute navigation motions, we use A* search to plan
a collision-free path between each pair of key-places. For the
manipulation motions, we first assume all other objects in the
containers have been removed, then we compute a feasible
pick motion for each object by sampling a grasp pose within
the sphere around the center of mass of the object. We only
consider the pick motion to be feasible if: (1) the gripper can
touch the object within some distance tolerance, (2) gripper
pose is collision free, (3) we can compute a valid inverse
kinematics solution for that pose based on UR5 kinematics
model, and (4) we can compute a feasible motion plan from
the robot to the sampled grasp via bidirectional RRT.

To estimate the execution time for each motion plan,
we assume every motion has constant velocity, and the
corresponding motion time was estimated by dividing path
length by the velocity of the robot base (navigation time)
set to 0.20m/s, and the joint speed of the end-effector
(manipulation time) set to 30 deg /s.

B. Baselines Description

We wish to validate two hypotheses. The first is that
our algorithm can compute an optimal plan by searching
through navigation and manipulation actions that inter-leaves
intra-container plans at different key-places. To validate this
hypothesis, we compare against:
• DOGAR-GREEDY: Extension of the algorithm suggested

in [4] to a mobile-manipulation setup. After computing

the intra-container plans, the algorithm extends the
greedy merge strategy of [4] while additionally incorpo-
rating navigation time to interleave intra-container plans
and viewpoint key-place visits.

• DOGAR-TSP: Computes the intra-container plans iden-
tically as above, but uses a TSP algorithm that plans
the least-cost navigation path that visits all key-places,
while committing to finishing an intra-container plan at
each container key-place.

The second hypothesis is that, by exploiting the hierarchi-
cal decomposition into containers and key-places and using
our novel heuristic function, we can plan more efficiently.
To test this, we compare against:
• LIN: Extension of [7] that performs non-hierarchical

planning. We converted LIN to be an anytime algorithm
via ARA* [11].

• FLAT-Ω2: Variant of Ω2 that uses our heuristic function
without hierarchically decomposing the problem. Uses
ARA*.

Table I summarizes the characteristics of all algorithms.
To evaluate these algorithms, we compare the plan quality

vs. planning time, and the time to find the best solution by
each algorithm. For all runs, we used an Intel i9-10900K
CPU at 3.7GHz, 32Gb memory, and 1 hour compute time,
after which the planner was aborted. All anytime algorithms
ran with ARA* [11] using the initial weight ε (heuristic
inflation factor) of 4.0 decremented by 0.2 at each step.

C. Experimental result

Figure 4 shows our results for anytime algorithms. Figure
4A shows that in Pomaria2 domain with BF of 31, Ω2-
ARA* converges to an optimum in 10−2.57 seconds, while
the best baseline LIN finds one in 101.51 seconds, demonstrat-
ing a speed up by a factor of more than 10,000; FLAT-Ω2

converges even slower, at around 101.9 seconds. This shows
that utilizing hierarchy is the key to efficient planning, which
reduces BF from 31 to 10 by reducing the choice among 24
objects into choice among 3 containers.

Table II compares the results of non-anytime algorithms.
It shows that Ω2-A* finds the optimal solution in less than
0.005 seconds and while DOGAR-TSP and DOGAR-GREEDY
algorithms finds solutions at comparable speeds, the costs
of their best solutions are higher than the optimal cost by a
factor of 2.89 and 1.67, respectively. This is because the
highest utility object in one container misleads DOGAR-
GREEDY to visit that container first, despite lower utility of
objects in other containers. In contrast, Ω2-A* and LIN do
not suffer from this problem. Furthermore, as Pomaria2 has
high w(τ) in two containers, an optimal plan preferentially
visits these containers before others. However, DOGAR-TSP
chooses navigation actions to minimize the total navigation
path, without accounting for manipulation costs. Due to
this, DOGAR-TSP takes sub-optimal navigation sequences in
Pomaria2, which results in a highly sub-optimal overall plan.

Figure 4B shows that in Merom0 domain with BF of 43,
Ω2-ARA* finds the optimal solution within 100.07 seconds



Algorithm Planning? Mobile Manipulation? Use Hierarchy? Nav-aware Heuristic? Anytime?
DOGAR-GREEDY X O O O* X
DOGAR-TSP O X O - X
LIN O O X X O*
FLAT-Ω2 O O X O O
Ω2-A* O O O O X
Ω2-ARA* O O O O O

TABLE I: Summary of algorithms and their properties; Planning indicates whether the search algorithm performs planning;
Mobile Manipulation indicates whether the search algorithm simultaneously considers navigation and manipulation costs
while branching; Use Hierarchy column indicates whether the algorithm exploits the hierarchy of the scene; Nav-aware
Heuristic indicates whether the algorithm incorporates navigation costs in the heuristic functions; Anytime indicates whether
the algorithm is an anytime algorithm. (*: modified from original algorithm; -: not applicable)
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Fig. 4: Planning time (log-scale) vs. plan cost as defined in the Eqn 1. For each plot, we show the 95% confidence intervals
over 10 different random seeds. The dotted line indicates the optimal solution. LIN only found a solution for Pomaria2.

Algorithm Pomaria2 Merom0 Benevolence2 Merom1
V π̂∗/V π∗ T (π̂∗)(s) V π̂∗/V π∗ T (π̂∗)(s) V π̂∗/V π∗ T (π̂∗)(s) V π̂∗/V π∗ T (π̂∗)(s)

Ω2-A* 1.00 ± 0.02 0.00 ± 0.00 1.00 ± 0.02 0.83 ± 0.09 1.00 ± 0.01 100.30 ± 18.26 1.00 ± 0.02 214.77 ± 27.68
DOGAR-GREEDY 1.67 ± 0.06 0.00 ± 0.00 1.18 ± 0.02 0.00 ± 0.00 1.20 ± 0.01 0.00 ± 0.00 1.75 ± 0.05 0.01 ± 0.00
DOGAR-TSP 2.89 ± 0.06 0.01 ± 0.01 1.35 ± 0.04 0.01 ± 0.00 1.49 ± 0.05 0.02 ± 0.00 2.93 ± 0.02 0.03 ± 0.00

TABLE II: Comparison of the performance of the non-anytime algorithms. V π̂
∗

denotes the cost of the best solution found
by each algorithm, V π

∗
denotes the cost of the optimal solution, and T (π̂∗) denotes the time (in seconds) to find the best

solution within the time and memory limit. V π̂
∗
/V π

∗
indicates the ratio of the cost of solution found by each algorithm to

the optimal cost. Each value was rounded to two decimal points. For each field, 95% confidence intervals over 10 different
random seeds are additionally reported.

whereas FLAT-Ω2 only finds a near-optimal solution within
the compute budget, in 102.71 seconds, demonstrating a
speed up by a factor more than 400. This again demonstrates
the efficacy of hierarchical planning, which reduces BF from
43 to 15 by reducing the choice among 32 objects into a
choice among 4 containers. As Merom0 has larger BF than
Pomaria2, the LIN baseline failed to compute the solution
within the compute budget, which also demonstrates the
efficacy of the hierarchy.

Table II shows that Ω2-A* finds the optimal solution at
0.83 seconds. DOGAR-TSP and DOGAR-GREEDY algorithms
find solutions faster respectively at 0.01 seconds and less
than 0.005 seconds, but again, their costs are each higher
than the optimal cost by a factor of 1.35 and 1.18. This is
due to the large number of navigation- and manipulation-
actions, which renders DOGAR-TSP suboptimal as it does
not simultaneously plan through mobile manipulation, and
renders DOGAR-GREEDY suboptimal as it fully commits to
a intra-container plan without being allowed to navigate
to other containers. Note that compared to Pomaria2, the
sub-optimality gap of DOGAR-GREEDY is smaller. This is

because we have uniform w(τ) = 1.0 for all containers in
this domain, which means the myopic actions of DOGAR-
GREEDY comparatively does not have as large of an effect.

Figure 4C shows that in Benevolence2 domain with BF
of 40, Ω2-ARA* finds the optimal solution within 102.02

seconds while FLAT-Ω2 finds a near-optimal solution within
the compute budget in 103.07 seconds, demonstrating a speed
up by a factor more than 11. LIN failed to compute the solu-
tion within the compute budget. Even though Benevolence2
has less BF than Merom0, Ω2-ARA* takes about 100 times
longer time to find the optimal solution while FLAT-Ω2 takes
two times longer. This is because hierarchical planning in
Ω2 is more effective in Merom0, in which there are fewer
viewpoint key-places and larger number of objects, which
reduces to container key-place choices, than in Benevolence2.

Table II shows that Ω2-A* finds the optimal solution in
100.30 seconds. While DOGAR-TSP and DOGAR-GREEDY
algorithms find a solution faster, the cost of their solutions
are worse than the optimal cost by a factor of 1.49 and 1.20
repsectively. Like the Merom0 domain, this sub-optimality is
because DOGAR-GREEDY is limited to single-step decisions



rather than planning ahead to optimize the overall trajectory;
this leads DOGAR-GREEDY algorithm to spurious navigation
actions between containers.

Figure 4D shows that in Merom1 domain with the largest
BF of 93, where Ω2-ARA* finds the optimal solution in
102.48 seconds. On the other hand, neither of the LIN and
FLAT-Ω2 baselines found a single sub-optimal solution within
the budget. This shows the effectiveness of the hierarchical
planning in large scenes, which reduces BF from 93 to 28
by reducing the choice among 75 objects into choice among
10 containers.

Table II shows that Ω2-A* finds the optimal solution
at 214.77 seconds. Even though DOGAR-TSP and DOGAR-
GREEDY algorithms find a solution a lot faster at 0.03 and
0.01 seconds, the cost of their solutions are worse than
the optimal cost respectively by a factor of 2.93 and 1.75.
Our setup for Merom1 is similar to Pomaria2, but Merom1
has 3 times as many objects and key-places as Pomaria 2,
resulting in a much larger BF. Due to this, more sub-optimal
choices are available to both DOGAR-TSP and DOGAR-
GREEDY algorithms; specifically for DOGAR-GREEDY, the
sub-optimal choices also accumulates with a longer planning
horizon, resulting in a more sub-optimal plan.

VI. CONCLUSION

In this paper, we proposed Ω2, an optimal and efficient
object search planner that simultaneously reason through
mobile manipulation in a large-scale multi-roomed cluttered
environment. To reduce the branching factor, we employ
hierarchical planning by separating intra-container planning
and interleaving intra-container plans through key place
planning. In addition, we propose a novel admissible and
consistent heuristic function that accounts for navigation
during key place planning for focused heuristic search via
A*. Lastly, we offer an anytime extension of our algorithm
via ARA* [11], so that the user can trade off the planning
time with plan cost based on the application.

We validated that Ω2 finds an optimal solution within
tractable planning time in environments with as many as 75
objects and 7 rooms, where other state-of-the-art baselines
either find highly suboptimal solutions, find an optimal
solution with orders of magnitude longer time, or fail to
find a feasible solution within compute budget. In the future,
we would like to address object search under uncertainties
arising from perception error or partial occlusion.
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